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Saturation and cavity-loss optimization in free-electron lasers
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In this paper we reconsider the problem of the optimum cavity losses for the free-electron-laser (FEL)
operation. We use the results of a recently proposed one-dimensional saturation model and show that
for large intracavity intensities the FEL behaves like conventional laser systems.
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In a number of previous papers [1] a simple one-
dimensional model to describe saturation effects in free-
electron lasers (FEL’s) has been developed [2]. One of
the main results of the above quoted papers has been the
derivation of two-gain versus intracavity-intensity scaling
relations, namely,
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where G,,, is the maximum gain of the system and I is
the saturation intensity. This last quantity plays the
same role as in conventional laser physics [3] and is the
value of the intensity halving the small signal gain of the
device. In the hypothesis of a low-gain homogeneously
bounded regime I, is provided by the following practical
formula:
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with ¥ being the electron relativistic factor, and N, A,
and k being the undulator number of periods, the period
length, and the parameter, respectively. Finally
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is the Bessel-factor correction.

In Fig. 1 we have plotted the gain versus x =1/l
along with the relative differences between Egs. (1a) and
(Ib). It is evident that for x < 3.8 the agreement between
the scaling relations is within 5% and for larger values it
tends to increase. We must emphasize that Eq. (1b)
correctly reproduces the numerical results for a larger in-
terval of x values (we have checked up to x =10). We
have therefore strong reasons to believe that, within the
limits of the one-dimensional model, Eq. (1b) is an accu-
rate description of the gain saturation versus intracavity
intensity. Equation (la) is, however, interesting for at
least three reasons.

(1) It reproduces more than satisfactorily the numerical
trend for a large range of x values.

(2) It is strongly reminiscent of the conventional laser-
gain saturation formula [3].

(3) It is more manageable than Eq. (1b).

A quantity of paramount importance in oscillator FEL
physics is the intracavity equilibrium intensity, which is
defined as the value of the intensity for which the net gain
of the system is zero, namely,
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where 7 denotes the total cavity losses. The intensity I,
is immediately obtained from Eq. (1a) which yields
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The derivation of x, from (1b) requires more work and the analysis of numerical data indicates that
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when 7 approaches zero. Equations (5a) and (5b) have
strongly different behaviors (see Fig. 2), the first scales in
fact as 1/V 7 and the second as 1/7. Equation (5a) is not
reliable for small 77 because the values of x in this region
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are large and out of the region of validity of Eq. (1a).

Assuming, furthermore, that the system is dominated
by active losses, the output-coupled power will be given
by
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FIG. 1. (a) Gain vs x=1/I,. The difference between the
values predicted by Egs. (1a) and (1b) are not appreciable on this
scale, G, =0.2. (b) A=(G(1p)—G(1a))/G1p) Vs x. The param-
eter A provides the relative differences between the predictions
of Egs. (1a) and (1b).

XGu =X (1) . (6)

The behavior of X}, vs 7 is shown in Fig. 3. The param-
etrization (5a) indicates the existence of an optimum 7,
namely,

172

0.14 —0.28

1+G

max

0.862—0.56(1+G

0.86

N* =G nax @)

max )

and for small 5, X}, approaches zero. In case (5b) X%,

vs 7 coincides with the previous case for > n*, while for
7 <n* the output-coupled intensity is almost a constant,
whose values are close to

2
X:ut = ;Gmax * (8)

In analogy to conventional lasers, the cavity losses optim-
izing the output-coupled power are 17=0; however, for
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FIG. 2. Equilibrium intracavity intensity (x,=1,/I,) vs the

cavity losses 1, G, =0.2. Solid line, Eq. (5b); dashed line, Eq.
(5a).
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FIG. 3. Output coupled power X5, =I%. /I, vs the cavity
losses, Gax =0.2. (a) Prediction from Eq. (5b). (b) Prediction
from Eq. (5a). (c) Passive losses 0.02, prediction from Eq. (5b).

FEL’s operating in the low-gain regime, X%, is constant
in the range 0 <n <7*.

The losses n* represent a kind of threshold optimum
value in the sense that below it, the extracted power is al-
most flat and above it, X}, tends to decrease. Further-
more, noticing that small losses require longer times to
reach equilibrium, the choice of n* for optimum loss of
the system might be certainly convenient from a practical
point of view.

We must also emphasize that passive losses also play a
role in the saturation process. Assuming therefore that

N=n,tmn,, 9

with 7, , denoting active and passive losses, respectively,
we get

X o =naXe(n,+m,) . (10)

We show in Fig. 3(c) the behavior of X}, versus the ac-
tive losses 7,, keeping fixed the passive losses 7,. It is in-
teresting to notice that in this case a nonzero optimum
value of 77, can be defined.

In this low-gain homogeneously broadened regime the
maximum gain is linearly linked to the gain coefficient g,
by the relation G,_,, =0.85g,. In this hypothesis we get
from Eq. (8)

I*,~0.5g,I, , 11

which is the same as quoted in Ref. [1] and yielding an in-
trinsic efficiency of 1/4N.

Before closing the paper it is worth clarifying the ex-
tension of the above analysis to the high-gain regime and
to the inclusion of inhomogeneous broadening effects.
Such an extension is almost straightforward since the
functional forms of gain versus intensity saturation are
still those given by Egs. (1a) and (1b) with the same quot-
ed limitations for the range of I /I;. The only quantities
which should be redefined in addition to the high-gain
and inhomogeneous broadening contributions are I; and
G
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Before specifying how I; and G_,, should be modified
it is better to clarify what is meant by high gain and the
inhomogeneously broadened regime. By high gain we
mean that the small-signal gain coefficient g, is assumed
to be larger than 0.3, and by inhomogeneous broadening
we mean that the effect of the beam parameters (energy
spread and emittances) are not negligible and may modify
the gain value.

In Fig. 4 we show the gain versus I /I; for a low-gain
FEL, including inhomogeneous broadening, and for a
high-gain FEL (g,=35). The curves have been obtained
by a numerical integration of the pendulum equation and
the agreement with (1a) and (1b) is very good. It is, how-
ever, evident that when the inhomogeneous broadening,
due to energy spread o, is included [see Fig. 4(a)], I in-
creases with an increasing energy spread, according to
the relation [Z;(0) is the value provided by Eq. (2)]

I(u)~I1,0)14+cu?), u=4No,, (12a)

where ¢ is a constant around 2. A similar behavior has
been observed when the emittance is included. When g,
increases, see Fig. 4(b), I, is a decreasing function of g,
and in the case of g, =5 can be reproduced by

1,(0)

m , (12b)

Is(go):

where a is a constant around 0.12. The formulas allow-
ing the parametrization of G,,,, including the high-gain
and inhomogeneous broadening corrections, have been
discussed in Ref. [4] and are not reported here for the
sake of brevity. The above elements indicate that the
model can be extended to the high-gain and inhomogene-
ously broadened regime without significant modifications.
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